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Abstract—The fifth-generation mobile network is characterized
as the edge of wireless connectivity for all intelligent automation.
Technically, the services’ requirements for Quality of Service
(QoS) have become more strict on latency and throughput. As
a result, the concept of Mobile Edge Computing (MEC) has
become promising. By placing servers close to the user-equipment
(UE), the paradigm enables much lower data transmission time
compared to the cloud-based scenario. With this advantage, MEC
reaches the requirements of low-latency. Moreover, recognition
and detection technology can be thus implemented in several live
video analytics scenarios. However, due to the limited physical
size on the edge server, resource allocation becomes a crucial
issue. In this paper, we proposed a Resource Management method
with Multiple Applications in Edge architecture (RMMAE) to
intelligently reallocate computing tasks in the heterogeneous
network. We design an algorithm to allocate computing resources
to applications such as facial detection, object detection and
pose estimation in our Edge testbed, and we prove impressive
improvement and performance on our testbed with multiple
applications.

Index Terms—Edge Computing, Resource Allocation, Live
Video Analytics

I. INTRODUCTION

With the rapid rise of the fifth-generation mobile commu-
nications era, artificial intelligence and Deep Learning (DL),
the efficiency and speed of network transmission and powerful
computing capabilities are becoming increasingly important.
Therefore, cloud computing is also popular because of its
sufficient data storage and excellent computing power without
direct active management by the user. Nowadays, several
providers have paid service of the cloud server, such as
Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, etc. Users may choose suitable services
to solve the problems. Nevertheless, the weakness of cloud
servers that the transmission delay between end-users and
cloud servers may keep the cost increasing considerably. Video
analytics services in real-time are also harsh constraints on
network bandwidth and congestion. Therefore, the purpose
of our works is to provide a high-quality and low-latency
computing system. Base on the ETSI Mobile Edge Computing
(MEC) in 5G white paper [1], we realize the edge computing is
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an important milestone in the 5G era. Furthermore, live video
analytics can be a common application in the MEC system
because of low-latency demand. For example, surveillance
cameras play an essential role in maintaining public safety. In
addition, the widespread development of traffic monitors, self-
driving, Virtual Reality (VR), and Augmented Reality (AR)
related to video analytics. Object detection and recognition
apply in many areas of computer vision, including image
retrieval, security, surveillance, automated vehicle systems,
and machine inspection.

However, limited computing resources of edge servers may
not afford multiple complexity and huge DL models. In brief,
it is a trade-off problem between low latency and high quality.
Delivering all data to the cloud server and performing high-
quality video analytics come with exceptionally high trans-
mission costs. If we only process the data to the edge server,
the server near users, the computing power may constrain the
result. So, we choose edge computing of cloud computing
on demand. Some works proposed the idea that determines
whether the service is quality-oriented or speed-oriented by
scoring users’ needs, such as [2] and [3]. The distributed
computing for the edge server and the cloud server is another
choice. The concept is similar to federated learning [4]. The
authors applied a decentralized approach to make the system
more efficient. Both [5] and [6] deployed the work through
distributed deep learning models deployed on the MEC nodes
for better performance. We can divide one task into sub-tasks
and distribute them to an edge server and a cloud server
for computing in an Edge-Cloud system. On the other hand,
resource allocation is also an essential issue for the edge-cloud
system. Hence the restriction of the computing resource on the
edge server, we need to allocate limited resources effectively
and use them where it is most need. [7] proposed a block-
chain-based video streaming system, and they formulate the
problem of optimizing the offload scheduling to optimize. [8]
provided a promoted QoS method to offload tasks.

The DICE-IoT system in [9] is our previous work. It
provides a facial recognition app for video analytics and for-
mulates the management to incentivize cooperative computing
provision between the Edge and the Cloud. Inspired by this
work, we will continue the concept of resource allocation
and implement more applications on our testbed to deal with



Fig. 1. Hierarchical architecture of two-tier Edge-Cloud in our testbed

more complex problems. Furthermore, we consider a model-
level pipeline composition that can decompose the model on
the different servers to cooperate for one application. The
architecture of our MEC system is a two-tiered edge cloud
computing with real-time video analytics. On top of that,
we provide an improved method RMMAE for resource load
balancing and implement the complete MEC system in the
actual environment.

The main contribution of our work is as follows:
• We reduce the transmitted latency by allocating resources

appropriately according to the system’s current situation.
• This is the Edge system with implied reasonable algo-

rithms to discuss and realize the situation where multiple
applications are in the system at the same time.

• We distribute the resources by the detection accuracy
request, current video transmission quality and GPU
status of edge server.

II. PROPOSED SCHEME DESIGN

In this section, we introduce the three-layered architecture of
the system, including the Cloud Layer, the MEC Layer and the
User Application Layer. The interaction between these layers
allows better allocation and improves the system performance.
Also, we design the data flow and the control flow with our
management mechanism.

A. Edge-Cloud Cooperative Computing Architecture

Edge and Fog Management and Orchestration is essential
in the MEC Layer, which plays a critical role in coordination
between components. According to hierarchical management,
we can master and integrate all the MEC nodes easily and
orderly. Figure 1 shows the architecture of the Edge system
in our testbed. First, the Edge server includes several MEC
nodes and the Edge Orchestrator; then, the Edge Orchestrator
will manage and coordinate MEC nodes to work in the MEC
server. As for a single MEC node, it consists of a control
node and a compute node. The control node may receive the
control signals sent by the orchestrator. It also collects and

TABLE I
PARAMETERS OF CONFIGURATION

Notation Definition
frφ Frame sampling rate (in fps)
wφ, hφ Frame {width, height} (in pixels)
rsφ Video resolution rsφ = wφ × hφ

bφedge Data size uploaded
from the device to the edge node per frame (in MB)

bφcloud Data size output
from the edge node to the cloud per frame (in MB)

mφ
edge GPU memory usage at the edge node (in MB)

mφ
cloud GPU memory usage at the cloud (in MB)

uφedge GPU utilization at the edge node (in [0, 1])

uφcloud GPU utilization at the cloud (in [0, 1])
cφedge Energy consumption at the edge node (in Watts)

cφcloud Energy consumption at the cloud (in Watts)
pφedge Per frame processing time at the edge node (in ms)

pφcloud Per frame processing time at the cloud (in ms)
Qφ Quality of detection and recognition (in [0, 1])
zφ Partial offloading indicator to the cloud

sends the information about GPU status to the orchestrator
periodically. The compute node in the MEC node provides
low latency computing, but with limited resource constraint
while the cloud server is assumed to have unlimited resource
budget.

We considered three types of end devices: mobile phones
connected to a 4G/5G base station, those connected to a WiFi
access point, and PCs connected with the Ethernet; each of
them has a camera. The solid line is the data flow, and the
dashed line means is the control flow. The camera records
live video and streaming it to the MEC server for real-time
analytics. The control nodes and the orchestrator in the MEC
server will then allocate computing resources and forward the
streaming request to either an appropriate MEC node or the
cloud server, based on the end users’ demand and the GPU
status of the edge server. Generally, the edge server aims to
provide the service with high quality and low latency.

B. System Model and Configurations

Our video programs run in both Cloud and MEC Layers,
but the resource management is only considered in MEC due
to the infinite resource assumption in Cloud. The devices in
the User Application Layer capture video and streaming it to
the MEC node for real-time video analytics, such as object
detection, facial detection, and pose estimation. Suppose that
each device has a specific latency requirement Lreq and a
quality requirement, Qreq. We also define configuration φ as
a specific decomposable pipeline and Φ as the collection of
all configurations.

We also consider the resolution and the video frame sam-
pling rate for all devices and the GPU resources as the
computing power on the cloud server and the edge server for
each configuration φ. The partial offloading indicator ϕφ is a
binary indicator and is defined as follows: If ϕφ = 1 means



Fig. 2. Workflow of periodic resource allocation control signals

the video is uploaded to Cloud Layer for serving. Otherwise,
MEC Layer processes the task.

To sum up, we denote the complete configuration set
Φφ(rsφ, frφ, ϕφ), which consists of all available configura-
tions for the proposed DICE scheme. On the other hand, we
also denote the configuration set, which only consists of the
MEC stratum configuration Φmec =

{
φ : ϕφ = 0, ∀φ ∈ ΦU

}
We may select the configuration according to the resource
status of the MEC node, latency requirement, and accuracy
requirement. Table 1 organize the parameters list which we
introduce in our problem formulations.

C. Work flow for control signals

Figure 2 presents the periodic control signals between the
devices, the MEC nodes, and the cloud server. The period
starts with communication between the servers and the user
device. After that, the user QoS report and the server state are
sent to the orchestrator. Next, the orchestrator will apply our
RAMME method to balance the load between the edge server
and cloud server, and to select proper MEC nodes and the
corresponding computing scheme. In addition, it will configure
data forwarding rules for data managers. Therefore, the system
updates data flow and the connection between MEC nodes,
cloud servers, and user devices. In conclusion, the orchestrator
will manage the edge server and also communicate with
the UE apps while the system will update the computing
configurations and offloading scheme in a more suitable way.
We can then control and adjust the system’s status dynamically
to make services more advanced and efficient.

III. ALGORITHM AND PROBLEM FORMULATION

We apply the intelligent algorithm RAMME for joint
latency- and accuracy-aware live video analytic services with
multiple applications in our actual testbed. Referring to the
previous work [9], this paper not only considers several types
of communication connected to our edge server but imple-
ments kinds of applications for users to choose. The problem
we’ve solved is to balance the QoS and the service latency.

Therefore, we develop a scoring mechanism considering both
social welfare to measure the revenue, and the cost on the Edge
and Cloud, to judge the performance of the offloading scheme.
The expected social welfare is maximized by selecting optimal
n,x, where n =

{
nφj ∀j, φ

}
represents the configuration

selections of MEC nodes. The binary variables x stand for
user association decision, where x =

{
xφij , ∀ i, j, φ

}
. The i

and j are the number of devices and MEC nodes, respectively.
xφij = 1 means the device i is associated with the MEC node
j with configuration φ for video analytics; otherwise xφij = 0.
We analogize the network to a directed graph G (M, L),
where M means the set of MEC nodes and L indicates the
communication between devices and the servers.

A. Social Welfare derivation

maxW (x, n) = Umec + Ucld

s.t. C1 :



∑
j∈Mc

i

∑
φ∈Φc

j

xφij ≤ 1 ∀i

∑
j∈M\Mc

i

∑
φ∈Φ

xφij = 0 ∀i

∑
j∈M

∑
φ∈Φ\Φc

j

xφij = 0 ∀i

C2 :



nφj ≤ N
φ
j ∀j, φ

nφj ≤
∑
i∈N

xφij ∀j, φ∑
φ∈Φ

nφj u
φ
j ≤ uavlj ∀j∑

φ∈Φ

nφjm
φ
j ≤ mavl

j ∀j

C3 : frφ
∑
i∈N

xφij ≤
nφj

tφj
=⇒ frφtφj

∑
i∈N

xφij ≤ nφj ,∀j, φ

C4 : xφij

(
Lreqi − Lφij

)
≥ 0 ∀i, j, φ.

C5 :
∑
j∈M

∑
φ∈Φ

xφijfr
φbφ ≤ rij , ∀lij ∈ L

C6 :


∑
lij∈L

∑
φ∈Φ

xφijfr
φbφ ≤ rij , ∀lij ∈ L∑

i∈N

∑
φ∈Φ

xφijfr
φbφcld ≤ rj,cld, ∀j

xφij ∈ {0, 1} , nφj ∈
{

0, 1, · · · , Nφ
j

}
∀i, j, φ

(1)
where the Umec and Ucld are the utility of MEC Layer and
utility of Cloud Layer. Constraints C1 and C2 represent the
user association between UEs and MEC nodes, and they are
bounded by the device requirements and GPU status. C3
considers the frame rate as the constraint to maintain stability
of service. Since the latency requirement is asked by the device
i, C4 shows the latency constraint. Furthermore, the data rate



of each link needs to satisfy its transmission capacity by C5
and C6.

B. Utility of Cloud layer

Since the MEC stratum pays π to compensate the per unit
effort to the cloud for the optimal computing provision, the
utility function of the cloud may like:

Ucld = Rcld − Ccld (2)

Ccld means the operation cost of the cloud per second:

Ccld = γcld
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφij priceφcld tφcld (3)

The γcld is a constant that denote the cost of converting
power consumption at the cloud server. We regard the total
GPU utilization as the effort per second of the cloud.

ecld =
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijt
φ
cldu

φ
cldfr

φ
(4)

And the revenue of the cloud present as:

Rcld = πecld (5)

C. Utility of MEC layer

The expected utility function of the MEC stratum is:

Umec = Rmec − Cmec − Pmec (6)

And Pmec = Rcld represents the total service fee.
The operation cost per second of the MEC stratum is similar

to the Cloud stratum:

Cmec = γmec
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijp
φ
j fr

φ
(7)

The γmec is a constant that denote the cost of converting power
consumption at the MEC node. We assume the service fee is
proportional to the user satisfaction, we have the revenue as
follows:

Rmec =
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijP
(
qφ
)

(8)

And according to equation (3) and (7), the social welfare
can be derived as:

W (a,x, n) = W (x) =
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφij

(
P
(
qφ
)
− Ωφj

)
(9)

The total operation cost

Ωφj =
(

Υmecp
φ
j + Υcldp

φ
cld

)
frφ,∀j, φ (10)

IV. EXPERIMENTAL RESULTS

This chapter set up an implementation platform and applied
the RMMAE algorithm. There are multiple video analytic
applications on a real testbed to select and prove our MEC
system’s better performance by the experimental results.

A. Deploy MEC system in our Testbed

1) Testbed Environment: Chunghwa Telecom (CHT) has set
up a 5G campus network and MEC server. The edge server
of our experimental testbed is point-to-point connected with
Chunghwa Telecom’s MEC server to develop various scenarios
for the main architecture of the system.

MEC server: The server consists of a control node and
a compute node. The compute node is equipped with an
individual GeForce RTX 3080 GPU instance. As for external
connections, there is a CHT SDN switch link between the
MEC server and three kinds of UEs.

Cloud server: Elastic Compute Cloud (EC2) of Amazon
Web Service (AWS) is a cloud-server rental service of Ama-
zon. We rent Amazon EC2 G4 Instances and its type is
G4dn.xlarge equipped with NVIDIA T4 GPUs and custom
Intel Cascade Lake CPUs.

User Devices: We have three scenarios to simulate the
user devices: PCs connected to the Ethernet to surf the
Internet, laptops to Wi-Fi, and mobile phones to 4G/5G mobile
networks. PCs and laptops connect to the MEC server via the
campus internet, while phones connecting via the CHT fiber
optic link from the base station to the MEC server.

Applications: Our test platform has three types of ap-
plications: facial detection, object detection, and pose es-
timation. In our previous work [9], we provide the facial
detection application. This paper implements object detection
and pose estimation with YOLOv4, YOLOv4-tiny AlphaPose,
and OpenPose. Also, we combine different kinds of video
analytics models above for a decomposable inference pipeline
and deploy with three offloading types: Edge only, Cloud only,
and Edge-Cloud.

2) Parameter Measurement in Testbed: Taking the actual
situation like the scene, we use the mobile phone with CHT
5G network to capture the video stream as input and adjust
the relevant camera and transmission information such as
frame rate and video resolutions to measure various situations.
Both the edge server and cloud server have individual GPU
instances as in the previous description. We list 70 kinds of
configurations with the different model schemes, and three
offloading types: Edge Only means the inference pipeline ran
at the MEC layer entirely, Cloud Only means the inference
pipeline ran at the Cloud layer entirely, and Edge-Cloud, the
inference pipeline is decomposed to run at the MEC layer and
Cloud layer.

3) Testing Scheme: We simulate the user requests and
implement the RMMAE system in the actual testbed based
on the configurations. The simulation parameters are as fol-
lows: the frame rate as 30 fps, the video resolutions are
uniform distribution in 1080p, 720p, and 480p, the accuracy
requirement is the uniform distribution between 0.5 to 0.8, the



(a) (b) (c)

Fig. 3. Performance versus number of devices. (a) Social Welfare. (b) Serving Ratio. (c) Utility of MEC layer. (d) Utility of Cloud layer. (e) Total Processing
Time(ms)

latency requirement is the uniform distribution between 200
to 1200(ms) and the application selection also random in three
choices. Further, we compare six schemes for experiment:
(1) Proposed-C: Completely framework with enable pipeline-

sharing.
(2) Proposed- Edge: Edge-only system with enable pipeline-

sharing.
(3) Dedicated-C: Completely framework with a dedicated

pipeline.
(4) Dedicated-Edge: Edge-only system with a dedicated

pipeline.
The proposed approaches enable one pipeline to serve
several task types. The dedicated serve by dedicated task
type.

(5) Greedy for Latency: Greedy for the minimum latency
configuration.

(6) Greedy for Accuracy: Greedy for the highest accuracy
configuration.

B. Implementation Results
Figure 5 shows the performance with a different number of

devices in one request. We make each request with 1 to 10
devices simultaneously, and we will test the same number of
device requests 5 times with different user simulation parame-
ters. They will be performed on the above six schemes. Figure
5(a) shows the proposed scheme has better social interest than
the other schemes. And compare to the two greedy schemes,
the greedy of accuracy is higher than the greedy of latency
because, in our calculation, the user quality may impact the
revenue and the welfare. However, the greedy of accuracy
method is still worse than our completely Proposed scheme.
Next, we find out these two greedy schemes can serve most
devices, except the requirements exceed the system’s limit
in Figure 5(b). Even if they can make most requests, they
still perform better than our proposed scheme in Figure 5(a).
That’s because it only considers quality or latency. Yet, there
is a trade-off problem between accuracy and latency. Figure
5(c) presents greedy for accuracy scheme costs more latency
than the other schemes. It only persuades the better quality
but does not care about the processing time anymore. In
contrast, greedy for latency only manage the processing time;

as a result, it may perform in lower latency than others. The
processing time with all of the schemes will increase with the
growth in the number of the device.

In conclusion, our Proposed-C scheme performs the better
result in the testing demo. It may balance the trade-off between
accuracy and latency with our management method and apply
it in several applications.

V. CONCLUSIONS

We provided multi-application services on the system, such
as facial recognition, object detection and pose estimation,
and also proposed the RAMME method to deal with more
scenarios and deploy with the intelligent MEC orchestrator.
We implemented the system with the CHT campus 5G system
and run the complete service on our actual testbed. Finally,
we proved that the proposed scheme of the RAMME has a
better performance than other schemes and with higher social
welfare as well.
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